Copper/zinc superoxide dismutase attenuates neuronal cell death by preventing extracellular signal-regulated kinase activation after transient focal cerebral ischemia in mice.
نویسندگان
چکیده
Recent studies have revealed that activation of extracellular signal-regulated kinase (ERK) may contribute to apoptosis, a cell death process involved in oxidative stress. We examined phosphorylation of ERK1/2 and oxidative stress after transient focal cerebral ischemia (FCI) using transgenic (Tg) mice that overexpress copper/zinc superoxide dismutase (SOD1). The mice were subjected to 60 min of middle cerebral artery (MCA) occlusion by intraluminal suture blockade followed by 1, 4, and 24 hr of reperfusion. Immunohistochemistry and Western blot analysis showed that phospho-ERK1 was markedly increased in the cortex within the MCA territory at 1 hr of reperfusion (p < 0.01), followed by a decrease at 24 hr in wild-type mice. Double staining with phospho-ERK1/2 and neuron-specific nuclear protein showed that phospho-ERK1/2 was primarily expressed in neurons. In SOD1 Tg mice, phospho-ERK1/2 was prominently reduced compared with nonischemic controls, shown by immunohistochemistry. Western blot analysis confirmed a significant decrease in phospho-ERK1/2 1 hr after FCI in the ischemic cortex (p < 0.005). Apoptotic-related DNA fragmentation was reduced in the ischemic cortex of SOD1 Tg mice compared with wild-type mice using a cell death assay. These results suggest that phosphorylation of ERK1/2 may be involved in apoptosis or cell death after transient FCI and that SOD1 may attenuate apoptotic cell death mediated by the mitogen-activated protein kinase/ERK pathway.
منابع مشابه
Copper-zinc superoxide dismutase affects Akt activation after transient focal cerebral ischemia in mice.
BACKGROUND AND PURPOSE The serine-threonine kinase Akt is activated by phosphorylation at serine-473. After phosphorylation, activated Akt inactivates BAD or caspase-9 or other apoptogenic components, thereby inhibiting cell death. In this study we examined the relationship between Akt phosphorylation and oxidative stress after transient focal cerebral ischemia (FCI) using copper-zinc superoxid...
متن کاملOverexpression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the Bad cell death signaling pathway.
The Bad signaling pathway contributes to the regulation of apoptosis after a variety of cell death stimuli, and Bad plays a key role in determining cell death or survival. We have reported that overexpression of copper/zinc superoxide dismutase (SOD1) reduces apoptotic cell death after transient focal cerebral ischemia (tFCI). However, both the role of the Bad pathway after tFCI and the role of...
متن کاملOxidative stress affects the integrin-linked kinase signaling pathway after transient focal cerebral ischemia.
BACKGROUND AND PURPOSE The integrin-linked kinase (ILK) signaling pathway contributes to regulation of cellular adhesion, migration, and differentiation, and to apoptotic cell death after a variety of cell death stimuli. We have reported that overexpression of copper/zinc superoxide dismutase (SOD1) reduces apoptotic cell death by promoting the phosphatidylinositol 3-kinase (PI3-K)/Akt survival...
متن کاملReduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3b survival signaling
Recent studies have revealed that oxidative stress has detrimental effects in several models of neurodegenerative diseases, including subarachnoid hemorrhage (SAH). However, how oxidative stress affects acute brain injury after SAH remains unknown. We have previously reported that overexpression of copper/zinc-superoxide dismutase (SOD1) reduces oxidative stress and subsequent neuronal injury a...
متن کاملOverexpression of copper-zinc superoxide dismutase attenuates acute activation of activator protein-1 after transient focal cerebral ischemia in mice.
BACKGROUND AND PURPOSE Reactive oxygen species (ROS) have been implicated in reperfusion injury after focal cerebral ischemia (FCI). ROS are known to regulate the activity of transcription factors such as activator protein-1 (AP-1), which is a dimer consisting of members of the Jun and Fos families. We investigated the role of ROS in AP-1 activity after FCI using transgenic mice that overexpres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 18 شماره
صفحات -
تاریخ انتشار 2002